Für die Erzeugung, Speicherung und Nutzung von Wasserstoff werden eine Vielzahl von Elementen, Materialien und Systemen benötigt, die hinsichtlich ihrer Lebensdauer und Kritikalität eingehend zu untersuchen sind und Raum für Optimierung sowie Substitution bieten. Innerhalb des Leistungszentrums werden daher die eingesetzten Materialien einerseits hinsichtlich ihres ökologischen Fußabdrucks und ihrer Eignung bewertet sowie andererseits deren Integration und Nutzung in effizienten und leistungsfähigen Systemen ermöglicht. Dabei sind nachhaltige Alternativen für eingesetzte Materialien zu identifizieren und deren Anwendung in Produktlösungen sicherzustellen. Hierfür muss der gesamte Lebenszyklus von Produkten und Systemen einer Wasserstoffökonomie betrachtet werden, von der Erzeugung, über Speicherung und Transport, bis hin zur Nutzung und Wiederverwertung. Neben den eingesetzten Materialien werden dabei auch Komponenten und Systeme hinsichtlich deren Zuverlässigkeit und Nachhaltigkeit analysiert sowie neue Recycling- und Circular-Economy-Konzepte entwickelt. So wird die Wasserstoffwirtschaft nicht nur nachhaltiger und geopolitisch unabhängiger, sondern auch effizienter und sicherer.
Lebenszyklus Wasserstoff-relevanter Systeme: Produktion, Speicherung, Transport und Wiederverwertung
Auch wenn die zur Wasserstoffherstellung genutzte Energie vor allem aus erneuerbaren Energien stammt, werden zur Erzeugung von Wasserstoff in der Regel Katalysatoren und Membranen in Elektrolyseuren eingesetzt, die Seltene Erden oder kritische Metalle wie Platin, Kobalt oder Iridium enthalten. Hier setzen die Forschenden des Leistungszentrums an drei Punkten an: Zum einen werden neue Synthesewege erforscht, bei denen die kritischen Bestandteile unter anderem durch Rezyklate substituiert werden. Zum anderen beschäftigen sich die Wissenschaftlerinnen und Wissenschaftler eingehend mit dem Recycling, der Ertüchtigung und der Rückgewinnung der zur Wasserstofferzeugung genutzten Technik. Drittens erfolgt eine Gesamtsystembetrachtung, um die Sicherheit und Zuverlässigkeit von Produkten wie Brennstoffzellen, Rohrleitungen, Elektrolyseuren und Speichern zu optimieren. Ziel ist, eine höchstmögliche Effizienz, Lebensdauer und Sicherheit in Wasserstoff-beaufschlagten bzw. -führenden Komponenten und Systemen bei größtmöglicher Ressourcenausnutzung zu erreichen.
Wasserstoff selbst eignet sich gut, um Energiespitzen bei den erneuerbaren Energien aufzufangen und überschüssige Energie zu speichern. Jedoch kann der Wasserstoff nicht immer dort eingesetzt werden, wo er erzeugt wird. Im Rahmen des Leistungszentrums erarbeiten die Forschenden daher verschiedene Möglichkeiten, Speichersysteme und deren Peripherie hinsichtlich der Betriebsfestigkeit sowie Nachhaltigkeit zu optimieren. Dies erfolgt etwa für Hochdrucktanks, Feststoffspeicher, in technischen Systemen im Rahmen der Wasserstoffverflüssigung und für Leitungssysteme mit speziellen Anforderungen an die Korrosionsfestigkeit unter zusätzlicher schwingender Beanspruchung. Dabei werden die Werkstoffe, Bauteile und Systeme eingehend hinsichtlich deren Belastung, Beanspruchung und Beanspruchbarkeit analysiert. Gleichzeitig werden die verwendeten Materialien auf ihre Kritikalität hin untersucht und Prozesse zur Substitution und Ertüchtigung beispielsweise durch Rezyklate und für das Recycling entwickelt.
Die dritte Säule im Wasserstofflebenszyklus ist die Nutzung. Um Wasserstoff elektrisch zu nutzen, werden vor allem Brennstoffzellen zur Energiewandlung eingesetzt, gerade in mit Wasserstoff angetriebenen Fahrzeugen. Doch gerade im Bereich des Nutzfahrzeug- und Güterverkehrs sind die Beanspruchbarkeiten sowie Lebensdauern von Brennstoffzellen und den Wasserstoff-führenden Komponenten noch nicht hinreichend untersucht, was eine gezielte Optimierung hinsichtlich Effizienz, Leichtbau und Werkstoffausnutzung und damit die effiziente Nutzung der Wasserstofftechnologie behindert. Darüber hinaus enthalten die Komponenten dieser Antriebssysteme wertvolle Technologiemetalle wie Platin oder Ruthenium, die nach dem Betriebsende zurückgewonnen und der Wiederverwertung zugeführt werden müssen. Auch neueste Entwicklungen wie Festoxid-, Schmelzkarbonat- oder Polymerelektrolyt-Brennstoffzellen werden innerhalb des Leistungszentrums hinsichtlich ihres ökologischen Fußabdrucks betrachtet.
Das Leistungszentrum wurde zum zweiten Quartal 2021 gestartet. Eine wichtige Aufgabe des Leistungszentrums wird neben der Forschung der Ergebnistransfer in einen hohen Technology-Readiness sein, weswegen Partner aus Universitäten und Forschungseinrichtungen sowie KMU und Industrieunternehmen einbezogen werden. Das Leistungszentrum wird zunächst vollumfänglich in die bestehende Infrastruktur der beteiligten Fraunhofer-Institute integriert sein. Mit der weiteren Operationalisierung und Umsetzung von Verwertungsmaßnahmen des Leistungszentrums (geplant ab 2022) sowie der Integration weiterer Partner ist eine kontinuierliche Fortführung im Sinne des schnellen Technologietransfers in die Wirtschaft angestrebt.